

Maschine Learning based Code Analysis for

Software Quality Assurance

Eldar Sultanow

Capgemini

Nuremberg, Germany

eldar.sultanow@capgemini.com

Stefan Konopik

IT Dept. of the Federal Employment Agency

Nuremberg, Germany

stefan.konopik@arbeitsagentur.de

André Ullrich

Dept. of Business Informatics, University of Potsdam

Potsdam, Germany

aullrich@lswi.de

Gergana Vladova

Dept. of Business Informatics, University of Potsdam

Potsdam, Germany

gvladova@lswi.de

Abstract—Machine Learning is often associated with

predictive analytics, for example with the prediction of buying

and termination behavior, with maintenance times or the

lifespan of parts, tools or products. However, Machine Learning

can also serve other purposes such as identifying potential

errors in a mission-critical large-scale IT process of the public

sector. A delay of troubleshooting can be expensive depending

on the error’s severity – a hotfix may become essential. This

paper examines an approach, which is particularly suitable for

Static Code Analysis in such a critical environment. For this, we

utilize a specially developed Machine Learning based approach

including a prototype that finds hidden potential for failure that

classical Static Code Analysis does not detect.

Keywords—association rule mining, Machine Learning, Static

Code Analysis, German Federal Employment Agency

I. INTRODUCTION

A characteristic feature of large software development
projects are immense requirements for ensuring code quality.
The case of the German Federal Employment Agency (FEA)
shows how complex it is to meet such requirements, and
demonstrates some failure consequences for the development
team and the organization. ALLEGRO is a mission-critical IT
process of FEA with a monthly disbursement volume of
approximately two billion euros (~25 billion euros annually)
to 10 million households (20 million eligible persons).
Approximately 50 thousand power users operate the system in
parallel. About 80 developers implement ALLEGRO
continuously, which comprises more than 800 thousand lines
of code. The software development is subject to a strong
quality-assured procedure and uses the established Static
Code Analysis (SCA) tool SonarQube. In spite of this, not all
errors can be discovered before going live. Depending on the
severity of an error in production, this often has the
consequence that a hotfix needs to be delivered, which causes
additional time and resources.

Newly added code may have “lookalikes” in the already
existing code. Even if the developers have a broad and deep
knowledge of the system, for them it is very hard to remember
and locate existing code that differs minimally from newly
created code. Human cognitive abilities to recognize such
repetitions and patterns reach their natural limits at this scale.
In case of a recent hotfix, the problem occurred in context of
a not-null check that was missing subsequently to a specific
variable declaration.

Classical SCA reaches its limits in the given context and
complexity. Not every errors in code is recognized, testing
rules needs to be predefined, classical SCA tools do not learn

from errors that already occurred, and finally their support to
programmers is focused on syntactical and grammatical
corrections, and it is limited to corrections that base on
predefined rules. Machine Learning (ML) opens up new ways
to lift these restrictions. A ML based system identifies patterns
in very large source code, which an individual is not able to
comprehend anymore.

Until now, Machine Learning has been used only in few
contexts of SCA, for example to detect duplicate code or
suggest better variable names and documentation. However,
ML methods allow pattern recognition, detection of
programming rules from existing verified source code and
violations in newly added code against these previously
identified rules. Supporting developers in writing code,
finding bugs, proposing better code conventions and detecting
code clones are all promising applications of Machine
Learning. ML is thus able to contribute to Static Code
Analysis extensively.

Against this background, the present paper demonstrates a
new approach of SCA that incorporates ML techniques for
recognizing patterns in large source code, which emerge in
software development, and which cannot be comprehended by
humans.

The subsequent part of this paper is organized as follows:
Section 2 discusses theoretical concepts that are relevant for
the prototype. Section 3 introduces a Machine Learning based
approach for pattern recognition. The prototype is presented
in Section 4. Section 5 provides conclusions, limitations, and
an outlook.

II. THEORETICAL BACKGROUND

Source code is a collection of instructions and functions
written by a programmer and processable by a machine, which
can be statically or dynamically analyzed in order to find, for
example, security flaws during automated tests.

Static Code Analysis is a selection of algorithms and
techniques used to analyze source code. It applies to code that
is not running and detects vulnerabilities, errors or poorly
written code at compile time [1]. Hence SCA can reduce the
cost of fixing security issues [2]. SCA tools are usually applied
during early development to ensure code quality and security
[3].

Dynamic Code Analysis (DCA) follows the opposite
approach: instead of analyzing the software at compile time,
under the approach of DCA, software is analyzed while it is
operating. In more concrete terms, Dynamic Code Analysis

“will monitor system memory, functional behavior, response
time, and overall performance of the system” [2]. An
advantage of DCA is the ability of identifying memory
accesses and buffer overflows [3]. Dynamic Code Analysis is
used during and after deployment to consider live
performance or detect potential issues [4], while Static Code
Analysis is used to analyze software statically, without
attempting to execute the code [5].

Machine Learning independently finds solutions for
unsolved problems based on existing data and algorithms by
recognizing patterns, regularities and deviations from these
regularities. It has been recognized as a valid method for
analyzing code [cf. 6, 7, 8] and is considered to be promising
for bug detection and prediction [cf. 9, 10]. Additionally, there
are various use cases in cyber security [11] or code clone
detection [12]. Lechtaler et al. [13] introduce a solution for
automated analysis of source code patches using ML
algorithms. Allamanis et al. [14, 15] discovered ML to be
useful for learning to adapt source code or for learning natural
coding conventions. Additionally, there exist first scientific
thrust towards code analysis that incorporates ML approaches.
For example, a group of git repositories named MAST
(Machine Learning for the Analysis of Source Code Text) is
available open source [16]. Furthermore, Singh, Srikant and
Aggarwal [17] introduce an approach for “question
independent” software grading using ML. Johnson, Song,
Murphy-Hill and Bowdidge [18] investigated the developers’
usage of SCA and came inter alia to the conclusion that
finding bugs or software defects using static analysis tools is
faster and cheaper than manual inspections.

There are a handful of ways to distinguish between ML
algorithms; for instance regarding the learning style that an
algorithm adopts and uses. They are usually classified into
Supervised-, Semi-supervised-, and Unsupervised Learning.
Relevant in the current context is the latter.

Unsupervised Learning needs neither predefined target
values nor feedback from the environment. The learning
machine tries to detect patterns in the input data itself. Since
the outcomes are unknown, there is no evaluation of the
accuracy. In other words, the learning algorithm needs to find
commonalities among input data, when the outcome in
training data is not predefined [19]. Frequent Pattern Mining
and Sequential Pattern Mining are both Unsupervised
Learning methods.

Frequent Pattern Mining aims to find relationships among
the items in a database. Pattern mining refers to algorithms
that discover interesting, unexpected or useful patterns in data.
Frequent pattern mining was first proposed by Agrawal,
Imieliński and Swami [20] in form of association rule mining
for market baskets analysis. Therein, a transaction is defined
as a set of distinct items. Given a set of transactions,
association rule mining finds the rules that enable to predict
the occurrence of a specific item based on the other items’
occurrences within transactions. Typical applications for
frequent pattern mining are web link analysis, genome
analysis, or click stream analysis. The most popular algorithm
is Apriori, which has been first introduced in 1993. A wide
variety of Apriori based algorithms was developed later, such
as FP-Growth and Eclat [21].

Sequential Pattern Mining deals with data represented as
a set of sequences. A sequence represents a set of transactions.
Sequential pattern mining is applied in many cases, such as

mining DNA (deoxyribonucleic acid) sequences and genomes
or discovering customer-buying patterns; for example the
customer buys a laptop, a digital camera, and a card reader
within several months [22].

III. PATTERN RECOGNITION VIA MACHINE LEARNING

Our idea of applying pattern recognition methods to code
analysis is to transfer the principle of analyzing a shopping
basket to SCA. The point of departure for shopping basket
analysis is a set O of items, and a set F of all transactions,
where each transaction T=(TID, I) comprises a subset of the

item set TIDF, IO as shown in Figure 1.

Items

Transactions

T1 T2

Fig. 1. Transactions and objects in shopping basket analysis

The basic idea is to solve the problem: find item sets such
as “fish” and “lemon”, which are part of such transactions that
make up a certain minimum percentage of all transactions.
These item sets are called “frequent patterns”. These frequent
patterns are the starting point for finding association rules such
as “fish follows lemon” or more objectively formulated as
“who buys fish, also buys lemon”.

We denote R: XY as an association rule with X,YO,

XY=.

Further, a transaction T=(TID, I) satisfies the rule R, when

it contains the disjoint item sets X and Y, (XY) I.

Earlier we mentioned a minimum percentage of
transactions that contain particular item sets. Related to this,
three parameters needs to be considered for completing the
defined framework:

1) The level of support of an item set
The level of support named as supportF(X) of an item set

X is the proportion of transactions that contain X, measured in
the total number of transactions:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋) =
|{𝑇 ∈ 𝐹|𝑇 = (𝑇𝐼𝐷, 𝐼), 𝑋 ⊆ 𝐼}|

|𝐹|

2) The level of support of an association rule

The level of support named as supportF(XY) of an

association rule R: XY represents a statistical significance of
the rule R, determined by the proportion of transactions that

contain XY, measured in the total number of transactions:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋 → 𝑌) =
|{𝑇 ∈ 𝐹|𝑇 = (𝑇𝐼𝐷, 𝐼), 𝑋 ∪ 𝑌 ⊆ 𝐼}|

|𝐹|

= 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋 ∪ 𝑌)

3) The confidence of an association rule

The confidence named as confidenceF(XY) of an
association rule describes a degree of confidence for this rule.

It is calculated from the proportion of transactions that contain

XY, measured by the number of transactions containing the
item set X:

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐹(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋 → 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝐹(𝑋)

But what if we do not refer to purchased objects, but to the
concept of program code as presented here? The core idea is
to consider code instructions, such as method calls, variable
declarations or not-null checks as items. In our model, a
transaction encloses item sets by a Java method. We derive
association rules based on the frequency of occurrences of
code instructions within Java methods. In addition, a
minimum level of support can be configured, for example
50%, so that items are only considered if they occur in every
second transaction.

However, before any pattern recognition may perform on
code, the measurement concept (when do we considered code
to be “similar”?) must be determined. It makes less sense to
consider two variable declarations as similar, if both variables
has the same name. It is better to make a comparison based on
the variables’ type. In order to perform these comparisons
efficiently, the code must be prepared accordingly. Every
variable declaration and every method call must therefore be
fully qualified. This preparation is part of the first step in the
presented approach. The entire verified code base serves as
input. The output is an attribute-relation file format (ARFF)
file, which contains the transformed code with fully qualified

information. In technical jargon, this step is usually referred to
as “Code Mining” or “API Mining”.

As a result, the algorithm delivers frequent item sets
including their support level, and association rules along with
their support level and confidence. The identification of rules
bases on verified (“clean”) code. New code, which naturally
is unverified, will be checked against violations of these rules.
After new code has passed all quality gates such as unit tests,
integration tests and peer reviews, it will be merged into the
verified code base. As the code base grows, so does the model.
Ultimately, the volume of the transaction database and rule set
increase the confidence.

The process is simplified in Figure 2. One of the
simplifications is that the development of releases in FEA is
not strictly sequential, but partly parallel – in simple terms the
development of Release X + 1 has already begun at the end of
the development of Release X. Moreover, in reality the model
is updated more often than once per release and in future the
update process will be automated using a Jenkins job (Jenkins
is an open source automation server).

Essentially, Figure 2 illustrates the principle that new or
newly modified code is checked against the existing rule set
during the development of releases. If a rule violation occurs,
the developer checks the affected code, corrects it if necessary,
and merges the code into the Git repository. Notwithstanding
this, each push is peer-reviewed by other experienced
developers.

Developers Git
Code Repository

API Miner Model Manager /
Provider

Sequential Pattern /
Frequent Itemset

Miner

pull

push

1

2 generate
ARFF 3pull 4

Merge
Stop

ARFF File 5
generate
Model

Rule Set

Development
of Release X Initial Model

Creation

verified
code

pull

improve
& push

6

8

Merge
Stop

Development of
Release X+1

Model
Improvement

Check code changes against rules7

rule violations

update
ARFF 9pull 10

new ARFF File 11
update
Model

new Rule Set

verified
code

Fig. 2. Theoretical procedure of model development and application

IV. PROTOTYPE

A. Technical description

The system uses three Machine Learning procedures: the
API Mining for generating an ARFF file (1), the Sequential
Pattern Mining (2), and the Frequent Item Set Mining for
recognizing patters in the prepared code that is given by the
ARFF file (3). Thereby, different open source frameworks are
used in combination.

However, it is clearly more demanding to implement
appropriate algorithms, as it seems at first glance. It proves to
be practicable using synthetic code as a verified code base and
place a not-null check at four similar code fragments
(following the earlier mentioned hotfix case). In a fifth
fragment that is part of new (unverified) code, the not-null
check was deliberately omitted. That was our litmus test: it
was considered passed if the system detects and indicates the
missing not-null check. During the implementation of the ML
based system, we gained experiences on how to best use the
algorithmic adjusting screws. One of the key findings was that
a very low value for minimum support and confidence was
needed to find the rule, which was relevant for the mentioned
hotfix. The system has the following adjusting screws:

Minimum Support Training specifies the lower limit on
the relative frequency of patterns, which are to be considered
for the Pattern Mining process. It causes, patterns of lower
frequency will not be detected.

Minimum Confidence Training indicates the minimum
required confidence of a rule in percent. Let us recall, the
confidence confidence(X→Y) of a rule is given by the quotient

sup(XY) / sup(X).

Max Antecedents Training specifies the limit of item sets
by pattern X. Patterns that exceed the limit are excluded. A
Subset of an excluded pattern below the limit will remain. The
higher the value, the longer the computing time.

Max Consequents Training specifies the limit of item sets
by pattern Y. Patterns that exceed the limit are excluded. A
subset of an excluded pattern below the limit will remain.
Again, higher values cause longer computing times.

Max intraprocedural recursion specifies the maximum
number of recursive steps in resolving method calls. A value
zero deactivates this feature.

Training set directory is a directory that contains the .java
files that are used for mining the patterns and rules.

Input Pattern Training is a regular expression that filters
Java classes out of the training set directory. The expression is
applied to the absolute paths of the .java files. With local
training (one method at a time), folders that contain tests are
generally filtered out. A possible expression is:

.*BProtErgSachlAbsetzungenErmittler.*|.*SubModelAbs
etzung.*|.*DAO.*|.*Constraint.*|.*Helper.*.

Solely files should be considered as input, whose name
contain "DAO", "Helper", etc.; in this concrete case, specific
business objects, data access objects and helper classes.

Caller Method Space is a regular expression that filters
out methods from the analysis. Here, the expression is applied
to the full qualified method name.

Call Method Space is a regular expression that filters out
method calls from the analysis. In this case, the expression is
matched with the full qualified name of a method call.

Fig. 3. Screenshot of the Machine Learning based Eclipse extension

Figure 3 shows the Eclipse extension used by the Federal
Employment Agency to identify potential errors in
ALLEGRO’s source code. The screenshot shows the code
fragment of the hotfix that we used as a reference example in
this paper. In the method ermittleDatenAusAuskunft the not-
null check was removed (the absence led to the hotfix) and the
Machine Learning based system was started to analyze this
method. In fact, the system identified the rule, which states
that at the relevant position in the code a not-null check must
occur; and the system correctly suggested to complete this
code fragment. Specifically, the system indicates that the
following statement (ItemSetX):

getAbsetzungsrateBetragDetail

needs to be collocated with the statement (ItemSetY):

if(IAbsetzungsrateBetragDetailTO! =null).

Accordingly, as shown in figure 3, the missing statement is
indicated at the highlighted line of code 299.

B. Application and implications

The system analyzed the source code of ALLEGRO and
determined the rule relevant to the hotfix. Related to this, the
main advantage is that Machine Learning is able to identify
the relevant rules by itself. This is a substantial innovation in
contrast to the present situation, where developers need to
provide a list of all necessary rules in advance. Beyond that,
our ML based system identified further rules.

One of these rules states that a transaction opened by
“TransactionalSection.enter” must also be marked as
“committable” by “TransactionalSection.markCommitable”.
The error appeared mainly in test code and is partially caused
by a lack of experience, since in test cases transactions must
be managed manually, whereas a framework manages
transactions in productive code.

Another example is the rule that developers must call the
round function in certain cases. Additionally, the system has
also provided guidance on the use of reusable, technically
appropriate utility/helper methods.

Let us mention a third example, namely a rule stipulating
that in test cases a list must be sorted, which contains sums of
certain monetary amounts (overpayments of health insurance
contributions). This list should be sorted after its entries were
summarized in a special processing step. The sorted order is
important for test cases, since otherwise during a stepwise
comparison the actual value would differ from the expected
one.

V. CONCLUSIONS

Within this paper, pattern recognition methods were used
in order to transfer the principle of shopping basket analysis
to Static Code Analysis. This approach was successfully
tested within ALLEGRO – a mission-critical IT process and
complex software system of the Federal Employment Agency.
We presented and discussed our idea, the mathematical
foundation, the implementation of the ML based system
including the configuration of its parameters, and finally the
experiences of the prototypical use of this system.

The concept, provided in this paper forms a key
contribution that Machine Learning can make to SCA.
However, there exist other possible contributions, which for
example include the code clone detection that recognizes

duplicate code, even if it is modified or written differently.
Vulnerability scans to detect security weaknesses in source
code are also addressable by Machine Learning. Another area
of application is naming and documentation suggestion for
variable names or method names in the code. For this, text-
mining procedures for context determination and analysis that
originate in the field of ML are suitable.

The practice of complex software development processes
has shown that rules with very high confidence are relevant
and their violation lead to errors. Even more interesting,
however, are rules with very low confidence, since patterns
that rarely occur in a large code mass are more difficult to
recognize by humans. Consequently, a very low value for the
minimum support and confidence may be required for a deep
source code analysis. This is an indicator for improving our
approach, for example by possibly blacklist certain patterns to
minimize the noise floor. Integrating our system as a plug-in
for Eclipse opens up new options as well. It is conceivable, for
instance, to enable “intelligent” auto completion by means of
Eclipse Code Recommenders. In addition, rules could also be
included in a revocation list so that they will not continue to
be displayed.

In summary, the key benefit of the approach presented
here is the ability of finding hidden potential for failure that
classic SCA does not detect. Classical SCA requires one to
predefine all rules in advance – after a bug becomes apparent
in production, the rule set will be adjusted in turn. On the
contrary, Machine Learning has the advantage that rules can
be found "intelligently" via pattern recognition – before error
prone code gets merged into the code base and a bug becomes
on the loose in a productive environment.

REFERENCES

[1] M. Nadeem, ”Why SonarQube: An introduction to Static Code
Analysis” 2015. Online available from:
https://dzone.com/articles/why-sonarqube-1 (accessed 24 February
2018)

[2] N. DuPaul, ”Static Testing vs. Dynamic Testing” 2017. Online
available from: https://www.veracode.com/blog/2013/12/static-
testing-vs-dynamic-testing (accessed 24 February 2018)

[3] B. McCorkendale, T. Xue Feng, G. Sheng, Z. Xiaole, M. Jun, M.
Qingchun, H. Ge Hua, and E.H.Wei Guo, "Systems and methods for
combining static and dynamic code analysis." U.S. Patent 8,726,392,
issued May 13, 2014.

[4] D. Cornell, “Static Analysis, Dynamic Analysis and how to use them
together“ in: Denim Group. Online available from:
https://denimgroup.com/media/pdfs/DenimGroup_
StaticAnalysisTechniquesForTestingApplicationSecurity_OWASPSa
nAntonio_20080131.pdf (accessed 24 February 2018)

[5] A. Marchenko, and P. Abrahamsson, ”Predicting Software Defect
Density: A case Study on Automated Static Code Analysis.” in
Proceedings of 8th International Conference, XP 2007. Agile Processes
in Software Engineering and Extreme Programming, Lecture Notes in
Computer Science, 4536, DOI: 10.1007/978-3-540-73101-6

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J.
Vanderplas, “Scikit-learn: Machine learning in Python”. Journal of
machine learning research, 12(Oct) 2011, pp.2825-2830.

[7] C. Robert, “Machine Learning, a Probabilistic Perspective”,
CHANGE,27:2 2014, pp. 62-63, DOI:
10.1080/09332480.2014.914768

[8] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of
malware behavior using machine learning”. Journal of Computer
Security, 19(4) 2011, pp.639-668.

[9] S. Axelsson, D. Baca, R. Feldt, D. Sidlauskas, and D Kacan, “Detecting
defects with an interactive code review tool based on visualisation and
Machine Learning”. Proceedings of the 21st International Conference
on Software Engineering and Knowledge Engineering 2009.

[10] M. Fejzer, M. Wojtyna, M.J. Burzańska, P. Wiśniewski, and K.J.
Stencel, “Supporting code review by automatic detection of potentially
buggy changes” in: S. Kozielski, D. Mrozek, P. Kasprowski, B.
Małysiak-Mrozek, and D. Kostrzewa D. (eds) “Beyond Databases,
Architectures and Structures” BDAS 2015. Communications in
Computer and Information Science, vol. 521. Springer, Cham.

[11] NIST SAMATE, “Source Code Security Analyzers” 2016. Online
available from:
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.h
tml (accessed 29 March 2018)

[12] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “CCLearner – A
deep learning-based clone detection approach“ 2017.

[13] A. C. Lechtaler, J. C. Liporace, M. Cipriano, E. García, A. Maiorano,
E. Malvacio, and N. Tapia, “Automated Analysis of Source Code
Patches using Machine Learning Algorithms”. IV Workshop de
Seguridad Informática (WSI) 2015, XXI Congreso Argentino de
Ciencias de la Computación.

[14] M. Allamanis, “Learning natural coding conventions”. Dissertation
2016, Institute for Adaptive and Neural Computation, School of
Informatics, University of Edinburgh.

[15] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code”. Proceedings of
Machine Learning Research, Volume 48: International Conference on
Machine Learning, 20-22 June 2016, New York, New York, USA, pp.
2091-2100

[16] MAST, “MAST – Machine Learning for the analysis of source code
text. 2018. Online available from: https://github.com/mast-group/
(accessed 29 March 2018)

[17] G. Singh, S. Srikant, and V. Aggarwal, “Question independent grading
using Machine Learning: The case of Computer Program Grading.”
KDD ’16, August 13 - 17, 2016, ACM Press: San Francisco, CA. DOI:
http://dx.doi.org/10.1145/2939672.2939696 (accessed 29 March 2018)

[18] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” Proceedings
of the 2013 International Conference on Software Engineering (ICSE
'13), San Francisco, CA, May 18 - 26, 2013, pp. 672-681, Piscataway,
NJ: IEEE Press.

[19] S.-S. Shai, and B.-D. Shai, “Understanding Machine Learning: From
theory to algorithms“ 2014. Cambridge University Press. Online
available from: http://www.cs.huji.ac.il/~shais/Understanding
MachineLearning (accessed 15 February 2018)

[20] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases“ in Acm sigmod record ,Vol.
22, No. 2 1993, pp. 207-216).

[21] C. C. Aggarwal, and J. Han (Eds.), “Frequent pattern mining“ 2014
Springer.

[22] T.-R. Li, Y. Xu, D. Ruan, and W. Pan, “Sequential pattern mining.
Intelligent data mining“. Springer, Berlin, Heidelberg, 2005. 103-122.

